Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761596

RESUMO

In this work, we investigate the Shannon entropy of four recently proposed hyperbolic potentials through studying position and momentum entropies. Our analysis reveals that the wave functions of the single-well potentials U0,3 exhibit greater localization compared to the double-well potentials U1,2. This difference in localization arises from the depths of the single- and double-well potentials. Specifically, we observe that the position entropy density shows higher localization for the single-well potentials, while their momentum probability density becomes more delocalized. Conversely, the double-well potentials demonstrate the opposite behavior, with position entropy density being less localized and momentum probability density showing increased localization. Notably, our study also involves examining the Bialynicki-Birula and Mycielski (BBM) inequality, where we find that the Shannon entropies still satisfy this inequality for varying depths u¯. An intriguing observation is that the sum of position and momentum entropies increases with the variable u¯ for potentials U1,2,3, while for U0, the sum decreases with u¯. Additionally, the sum of the cases U0 and U3 almost remains constant within the relative value 0.01 as u¯ increases. Our study provides valuable insights into the Shannon entropy behavior for these hyperbolic potentials, shedding light on their localization characteristics and their relation to the potential depths. Finally, we extend our analysis to the Fisher entropy F¯x and find that it increases with the depth u¯ of the potential wells but F¯p decreases with the depth.

2.
J Phys Chem A ; 126(14): 2185-2195, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35383460

RESUMO

Entangled two-photon absorption (ETPA) has recently become a topic of lively debate, mainly due to the apparent inconsistencies in the experimentally reported ETPA cross sections of organic molecules obtained by a number of groups. In this work, we provide a thorough experimental study of ETPA in the organic molecules Rhodamine B (RhB) and zinc tetraphenylporphirin (ZnTPP). Our contribution is 3-fold: first, we reproduce previous results from other groups; second, we on the one hand determine the effects of different temporal correlations─introduced as a controllable temporal delay between the signal and idler photons to be absorbed─on the strength of the ETPA signal, and on the other hand, we introduce two concurrent and equivalent detection systems with and without the sample in place as a useful experimental check; third, we introduce, and apply to our data, a novel method to quantify the ETPA rate based on taking into account the full photon-pair behavior rather than focusing on singles or coincidence counts independently. Through this experimental setup we find that, surprisingly, the purported ETPA signal is not suppressed for a temporal delay much greater than the characteristic photon-pair temporal correlation time. While our results reproduce the previous findings from other authors, our full analysis indicates that the signal observed is not actually due to ETPA but simply to linear losses. Interestingly, for higher RhB concentrations, we find a two-photon signal that, contrary to expectations, likewise does not correspond to ETPA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA